给你一个链表数组,每个链表都已经按升序排列。

请你将所有链表合并到一个升序链表中,返回合并后的链表。

简单思路

  1. 实现合并两个升序链表的方法,将 lists 迭代得出结果
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
var mergeKLists = function (lists) {
const mergeTwoList = (link1, link2) => {
const dummyHead = new ListNode()
let cur = dummyHead
while (link1 && link2) {
if (link1.val < link2.val) {
cur.next = link1
link1 = link1.next
} else {
cur.next = link2
link2 = link2.next
}
cur = cur.next
}
if (link1) {
cur.next = link1
}
if (link2) {
cur.next = link2
}
return dummyHead.next
}
let curLink = null
for (const link of lists) {
curLink = mergeTwoList(link, curLink)
}
return curLink
}

改进思路

  1. 迭代合并方法简单但效率一般,时间复杂度为 O(k * k * n),n 为链表平均长度
  2. 考虑维护一个最小堆,将时间复杂度降低到 O(k * n)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
var mergeKLists = function (lists) {
let heap = new BinaryHeap(function (node) {
return node.val
})

for (let i = 0; i < lists.length; ++i) {
let node = lists[i]
if (node !== null) {
heap.push(node)
}
}

let dummyHead = new ListNode()
let cur = dummyHead
while (heap.size() > 0) {
let node = heap.pop()
if (node.next !== null) {
heap.push(node.next)
}
cur.next = node
cur = cur.next
}
return dummyHead.next
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
function BinaryHeap(scoreFunction) {
this.content = []
this.scoreFunction = scoreFunction
}

BinaryHeap.prototype = {
push: function (element) {
// Add the new element to the end of the array.
this.content.push(element)
// Allow it to bubble up.
this.bubbleUp(this.content.length - 1)
},

pop: function () {
// Store the first element so we can return it later.
var result = this.content[0]
// Get the element at the end of the array.
var end = this.content.pop()
// If there are any elements left, put the end element at the
// start, and let it sink down.
if (this.content.length > 0) {
this.content[0] = end
this.sinkDown(0)
}
return result
},

remove: function (node) {
var length = this.content.length
// To remove a value, we must search through the array to find
// it.
for (var i = 0; i < length; i++) {
if (this.content[i] != node) continue
// When it is found, the process seen in 'pop' is repeated
// to fill up the hole.
var end = this.content.pop()
// If the element we popped was the one we needed to remove,
// we're done.
if (i == length - 1) break
// Otherwise, we replace the removed element with the popped
// one, and allow it to float up or sink down as appropriate.
this.content[i] = end
this.bubbleUp(i)
this.sinkDown(i)
break
}
},

size: function () {
return this.content.length
},

bubbleUp: function (n) {
// Fetch the element that has to be moved.
var element = this.content[n],
score = this.scoreFunction(element)
// When at 0, an element can not go up any further.
while (n > 0) {
// Compute the parent element's index, and fetch it.
var parentN = Math.floor((n + 1) / 2) - 1,
parent = this.content[parentN]
// If the parent has a lesser score, things are in order and we
// are done.
if (score >= this.scoreFunction(parent)) break

// Otherwise, swap the parent with the current element and
// continue.
this.content[parentN] = element
this.content[n] = parent
n = parentN
}
},

sinkDown: function (n) {
// Look up the target element and its score.
var length = this.content.length,
element = this.content[n],
elemScore = this.scoreFunction(element)

while (true) {
// Compute the indices of the child elements.
var child2N = (n + 1) * 2,
child1N = child2N - 1
// This is used to store the new position of the element,
// if any.
var swap = null
// If the first child exists (is inside the array)...
if (child1N < length) {
// Look it up and compute its score.
var child1 = this.content[child1N],
child1Score = this.scoreFunction(child1)
// If the score is less than our element's, we need to swap.
if (child1Score < elemScore) swap = child1N
}
// Do the same checks for the other child.
if (child2N < length) {
var child2 = this.content[child2N],
child2Score = this.scoreFunction(child2)
if (child2Score < (swap == null ? elemScore : child1Score)) swap = child2N
}

// No need to swap further, we are done.
if (swap == null) break

// Otherwise, swap and continue.
this.content[n] = this.content[swap]
this.content[swap] = element
n = swap
}
},
}